skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Adhikari, Abhishek"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 4, 2025
  2. Free, publicly-accessible full text available December 4, 2025
  3. A simple model for average backscatter power from clutter is developed for indoor RF sensing applications and verified through measurements. A narrowband 28 GHz sounder used a quasi-monostatic radar arrangement with an omnidirectional transmit antenna illuminating an indoor scene and a spinning horn receive antenna less than 1 m away collecting backscattered power as a function of azimuth. Median average backscatter power was found to vary over a 12 dB range, with average power generally decreasing with increasing room size. A deterministic model of average backscattered power dependent on distance to nearest wall and clutter reflection coefficient reproduces observations with 4.0 dB RMS error. 
    more » « less
  4. Outdoor-to-indoor signal propagation poses significant challenges to millimeter-wave link budgets. To gain insight into outdoor-to-indoor millimeter-wave at 28GHz, we conducted an extensive measurement campaign consisting of over 2,200 link measurements in West Harlem, New York City, covering seven highly diverse buildings. A path loss model constructed over all measured links shows an average of 30dB excess loss over free space at distances beyond 50m. We find the type of glass to be the dominant factor in outdoor-to-indoor loss, with 20dB observed difference between grouped scenarios with low- and high-loss glass. Other factors such as the presence of scaffolding, tree foliage, or elevated subway tracks, as well as difference in floor height are also found to have a 5–10dB impact. We show that for urban buildings with high-loss glass, outdoor-toindoor downlink capacity up to 400Mb/s is supported for 90% of indoor customer premises equipment by a base station up to 40m away. For buildings with low-loss glass, such as our case study covering multiple classrooms of a public school, downlink capacity over 2.8/1.4Gb/s is possible from a base station 57/133m away within line-of-sight. We expect these results to help inform the planning of millimeter-wave networks targeting outdoor-toindoor deployments in dense urban environments, as well as provide insight into the development of scheduling and beam management algorithms. Index Terms—Millimeter-wave wireless, 28 GHz measurements, path loss models, wireless network planning, 5G-andbeyond networks. 
    more » « less
  5. Modern-day radar is used extensively in applications such as autonomous driving, robotics, air traffic control, and maritime operations. The commonality between the aforementioned examples is the underlying tracking filter used to process ambiguous detections and track multiple targets. In this paper, we present a Software-Defined Radio-based radar testbed that leverages controllable and repeatable large-scale wireless channel emulation to evaluate diverse radar applications experimentally without the complexity and expense of field testing. Through over-the-air (OTA) and emulated evaluation, we demonstrate the capa-bilities of this testbed to perform multiple-target tracking (MTT) via Joint Probabilistic Data Association (JPDA) filtering. This testbed features the use of flexible sub-6 GHz or mmWave operation, electromagnetic ray tracing for site-specific emulation, and software reconfigurable radar waveforms and processing. Although the testbed is designed generalizable, for this paper we demonstrate its capabilities using an advanced driver-assistance system radar application. 
    more » « less
  6. Outdoor-to-indoor (OtI) signal propagation further challenges link budgets at millimeter-wave (mmWave). To gain insight into OtI mmWaveat28GHz, we conducted an extensive measurement campaign consisting of over 2,000 link measurements in West Harlem, NewYorkCity, covering seven highly diverse buildings. A path loss model constructed over all links shows an average of 30dB excess loss over free space at distances beyond 50m. We find the type of glass to be the dominant factor in OtI loss, with 20dB observed difference between clustered scenarios with low- and high-loss glass. Other factors, such as difference in floor height, are found to have an impact between 5ś10dB. We show that for urban buildings with high-loss glass, OtI data rates up to 400Mb/s are supported for 90% of indoor users by a base station (BS) up to 49m away. For buildings with low-loss glass, such as our case study covering multiple classrooms of a public school, data rates over 2.8/1.4Gb/s are possible from a BS 68/175m away when a line-of-sight path is available. We expect these results to be useful for the deployment of OtI mmWave networks in dense urban environments and the development of scheduling and beam management algorithms. 
    more » « less